On inversions in normed linear spaces
نویسندگان
چکیده
منابع مشابه
Remotality and proximinality in normed linear spaces
In this paper, we consider the concepts farthest points and nearest points in normed linear spaces, We obtain a necessary and coecient conditions for proximinal, Chebyshev, remotal and uniquely remotal subsets in normed linear spaces. Also, we consider -remotality, -proximinality, coproximinality and co-remotality.
متن کاملOn co-Farthest Points in Normed Linear Spaces
In this paper, we consider the concepts co-farthest points innormed linear spaces. At first, we define farthest points, farthest orthogonalityin normed linear spaces. Then we define co-farthest points, co-remotal sets,co-uniquely sets and co-farthest maps. We shall prove some theorems aboutco-farthest points, co-remotal sets. We obtain a necessary and coecient conditions...
متن کاملMinimizing Functionals on Normed - linear Spaces
This paper extends results of [1], [2], of Goldstein, and [3] of Vainberg concerning steepest descent and related topics. An example Is given taken from a simple rendezvous problem in control theory. The problem is one of minimizing a norm on an affine subspace. The problem here is solved in the primal. A solution in the dual is given by Neustadt [4]. I. GENERATION OF MINIMIZING SEQUENCES Let E...
متن کاملPartial Differentiation on Normed Linear Spaces Rn
Let i, n be elements of N. The functor proj(i, n) yielding a function from Rn into R is defined by: (Def. 1) For every element x of Rn holds (proj(i, n))(x) = x(i). Next we state two propositions: (1) dom proj(1, 1) = R1 and rng proj(1, 1) = R and for every element x of R holds (proj(1, 1))(〈x〉) = x and (proj(1, 1))−1(x) = 〈x〉. (2)(i) (proj(1, 1))−1 is a function from R into R1, (ii) (proj(1, 1...
متن کاملISOMETRY ON LINEAR n-NORMED SPACES
This paper generalizes the Aleksandrov problem, the Mazur–Ulam theorem and Benz theorem on n-normed spaces. It proves that a one-distance preserving mapping is an nisometry if and only if it has the zero-distance preserving property, and two kinds of n-isometries on n-normed spaces are equivalent.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1969
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1969-0235409-5